Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental Investigation of a DISI Production Engine Fuelled with Methanol, Ethanol, Butanol and ISO-Stoichiometric Alcohol Blends

2015-04-14
2015-01-0768
Stricter CO2 and emissions regulations are pushing spark ignition engines more and more towards downsizing, enabled through direct injection and turbocharging. The advantages which come with direct injection, such as increased charge density and an elevated knock resistance, are even more pronounced when using low carbon number alcohols instead of gasoline. This is mainly due to the higher heat of vaporization and the lower air-to-fuel ratio of light alcohols such as methanol, ethanol and butanol. These alcohols are also attractive alternatives to gasoline because they can be produced from renewable resources. Because they are liquid, they can be easily stored in a vehicle. In this respect, the performance and engine-out emissions (NOx, CO, HC and PM) of methanol, ethanol and butanol were examined on a 4 cylinder 2.4 DI production engine and are compared with those on neat gasoline.
Technical Paper

Exploration of Cavitation-Suppressing Orifice Designs for a Heavy-Duty Diesel Injector Operating with Straight-Run Gasoline

2019-09-09
2019-24-0126
The occurrence of cavitation inside injectors is generally undesirable since it can cause material erosion and result in deviations from the expected injector performance. Previous numerical work employing an injector geometry measured with x-ray diagnostics and operating with a high-volatility straight-run gasoline (SRG) has shown that: (1) most of the cavitation is generally observed at low needle lifts, (2) needle motion is responsible for asymmetric structures in the internal flow as well as large pressure and velocity gradients that trigger phase transition at the orifice inlets, and (3) cavitation affects the injector discharge coefficient and distribution of injected fuel. To explore the potential for material damage within the injector orifices due to cavitation cloud collapse, the cavitation-induced erosion risk assessment (CIERA) tool has been applied for the first time to the realistic geometry of a heavy-duty injector using the CONVERGE software.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Fuel Property Effects on Spray Atomization Process in Gasoline Direct Injection

2020-04-14
2020-01-0329
This paper presents a computational fluid dynamics (CFD) study of the Engine Combustion Network (ECN) Spray G under non-vaporizing condition, focusing on the impacts of fuel properties as well as realistic geometry on the atomization process. The large-eddy-simulation method, coupled with the volume-of-fluid method, is used to model the high-speed turbulent two-phase flow. A moving-needle boundary condition is applied to capture the internal flow boundary condition accurately. The injector geometry was measured with micron-level resolution using x-ray tomographic imaging at the Advanced Photon Source at Argonne National Laboratory, providing detailed machining tolerance and defects from manufacturing and a realistic rough surface. A 2.5-μm fine mesh is used to sufficiently resolve the details of liquid-gas interface and the breakup process.
Technical Paper

Full Fuel–Cycle Greenhouse Gas Emission Impacts of Transportation Fuels Produced from Natural Gas

2000-04-26
2000-01-1505
Because of its abundance and because it offers significant energy and environmental advantages, natural gas has been promoted for use in motor vehicles. A number of transportation fuels are produced from natural gas; each is distinct in terms of upstream production activities and vehicle usage. In this paper, we present greenhouse gas emission impacts of using various natural gas–based transportation fuels. We include eight fuels – compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, hydrogen, dimethyl ether, Fischer–Tropsch diesel, and electricity – for use in five types of motor vehicles – spark–ignition vehicles, compression–ignition vehicles, hybrid electric vehicles, battery–powered electric vehicles, and fuel–cell vehicles. In our evaluation, we separate these fuels and vehicle technologies into near– and long–term options to address technology progress over time.
Journal Article

Gaseous and Particulate Emissions Using Isobutanol-Extended Fuel in Recreational Marine Two-Stroke and Four-Stroke Engines

2014-11-11
2014-32-0087
Biologically derived isobutanol, a four carbon alcohol, has an energy density closer to that of gasoline and has potential to increase biofuel quantities beyond the current ethanol blend wall. When blended at 16 vol% (iB16), it has identical energy and oxygen content of 10 vol% ethanol (E10). Engine dynamometer emissions tests were conducted on two open-loop electronic fuel-injected marine outboard engines of both two-stroke and four-stroke designs using indolene certification fuel (non-oxygenated), iB16 and E10 fuels. Total particulate emissions were quantified using Sohxlet extraction to determine the amount of elemental and organic carbon. Data indicates a reduction in overall total particulate matter relative to indolene certification fuel with similar trends between iB16 and E10. Gaseous and PM emissions suggest that iB16, relative to E10, could be promising for increasing the use of renewable fuels in recreational marine engines and fuel systems.
Technical Paper

Gaseous and Particulate Emissions from a Vehicle with a Spark-Ignition Direct-Injection Engine

1999-03-01
1999-01-1282
Particulate and gaseous emissions from a Mitsubishi Legnum GDI™ wagon were measured for FTP-75, HWFET, SC03, and US06 cycles. The vehicle has a 1.8-L spark-ignition direct-injection engine. Such an engine is considered a potential alternative to the compression-ignition direct-injection engine for the PNGV program. Both engine-out and tailpipe emissions were measured. The fuels used were Phase-2 reformulated gasoline and Indolene. In addition to the emissions, exhaust oxygen content and exhaust-gas temperature at the converter inlet were measured. Results show that the particulate emissions are measurable and are significantly affected by the type of fuel used and the presence of an oxidation catalyst. Whether the vehicle can meet the PNGV goal of 0.01 g/mi for particulates depends on the type of fuel used. Both NMHC and NOx emissions exceed the PNGV goals of 0.125 g/mi and 0.2 g/mi, respectively. Meeting the NOx goal will be especially challenging.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Technical Paper

How Fuel Composition Affects On-Board Reforming for Fuel Cell Vehicles

2003-10-27
2003-01-3272
Different blends of gasoline range hydrocarbons were investigated to determine the effect of aromatic, naphthenic, and paraffinic content on performance in an autothermal reformer. In addition, we investigated the effects of detergent, antioxidant, and oxygenate additives. These tests indicate that composition effects are minimal at temperatures of 800°C and above, but at lower temperatures or at high gas hourly space velocities (GHSV approaching 100,000 h-1) composition can have a large effect on catalyst performance. Fuels high in aromatic and naphthenic components were more difficult to reform. In addition, additives, such as detergents and oxygenates were shown to decrease reformer performance at lower temperatures.
Technical Paper

Hydrocarbon Speciation in Blended Gasoline-Natural Gas Operation on a Spark-Ignition Engine

2016-10-17
2016-01-2169
The high octane rating and more plentiful domestic supply of natural gas make it an excellent alternative to gasoline. Recent studies have shown that using natural gas in dual fuel engines provides one possible strategy for leveraging the advantages of both natural gas and gasoline. In particular, such engines been able to improve overall engine efficiencies and load capacity when they leverage direct injection of the natural gas fuel. While the benefits of these engine concepts are still being explored, differences in fuel composition, combustion process and in-cylinder mixing could lead to dramatically different emissions which can substantially impact the effectiveness of the engine’s exhaust aftertreatment system. In order to explore this topic, this study examined the variations in speciated hydrocarbon emissions which occur for different fuel blends of E10 and compressed natural gas and for different fuel injection strategies on a spark-ignition engine.
Technical Paper

Impact of Effective Compression Ratio on Gasoline-Diesel Dual-Fuel Combustion in a Heavy-Duty Engine Using Variable Valve Actuation

2015-09-01
2015-01-1796
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
Technical Paper

Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

2017-03-28
2017-01-0661
Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5.
Journal Article

Insights into Engine Knock: Comparison of Knock Metrics across Ranges of Intake Temperature and Pressure in the CFR Engine

2018-04-03
2018-01-0210
Of late there has been a resurgence in studies investigating parameters that quantify combustion knock in both standardized platforms and modern spark-ignition engines. However, it is still unclear how metrics such as knock (octane) rating, knock onset, and knock intensity are related and how fuels behave according to these metrics across a range of conditions. As part of an ongoing study, the air supply system of a standard Cooperative Fuel Research (CFR) F1/F2 engine was modified to allow mild levels of intake air boosting while staying true to its intended purpose of being the standard device for American Society for Testing and Materials (ASTM)-specified knock rating or octane number tests. For instance, the carburation system and intake air heating manifold are not altered, but the engine was equipped with cylinder pressure transducers to enable both logging of the standard knockmeter readout and state-of-the-art indicated data.
Technical Paper

Integrated Fuel Processor Development

2002-06-03
2002-01-1886
The Department of Energyís Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc.
Technical Paper

Investigation of Injection Parameters in a Hydrogen DI Engine Using an Endoscopic Access to the Combustion Chamber

2007-04-16
2007-01-1464
In order to achieve the targets for hydrogen engines set by the U.S. Department of Energy (DOE) - a brake thermal efficiency of 45% and nitrogen oxide (NOx) emissions below 0.07 g/mi - while maintaining the same power density as comparable gasoline engines, researchers need to investigate advanced mixture formation and combustion strategies for hydrogen internal combustion engines. Hydrogen direct injection is a very promising approach to meeting DOE targets; however, there are several challenges to be overcome in order to establish this technology as a viable pathway toward a sustainable hydrogen infrastructure. This paper describes the use of endoscopic imaging as a diagnostic tool that allows further insight into the processes that occur during hydrogen combustion. It also addresses recent progress in the development of advanced direct-injected hydrogen internal combustion engine concepts.
Technical Paper

LES Analysis on Cycle-to-Cycle Variation of Combustion Process in a DISI Engine

2019-01-15
2019-01-0006
Combustion cycle-to-cycle variation (CCV) of Spark-Ignition (SI) engines can be influenced by the cyclic variations in charge motion, trapped mass and mixture composition inside the cylinder. A high CCV leads to misfire or knock, limiting the engine’s operating regime. To understand the mechanism of the effect of flow field and mixture compositions on CCV, the present numerical work was performed in a single cylinder Direct Injection Spark-Ignition (DISI) engine. A large eddy simulation (LES) approach coupled with the G-equation combustion model was developed to capture the CCV by accurately resolving the turbulent flow field spatially and temporally. Further, the ignition process was modeled by sourcing energy during the breakdown and arc phases with a line-shape ignition model which could move with the local flow. Detailed chemistry was solved both inside and outside the flame front. A compact 48-species 152-reactions primary reference fuel (PRF) reduced mechanism was used.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Technical Paper

Low-Friction Coatings for Air Bearings in Fuel Cell Air Compressors

2000-04-02
2000-01-1536
In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the U.S. Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. We presents here an evaluation of the Argonne coating for air compressor thrust bearings.
Journal Article

Meeting RFS2 Targets with an E10/E15-like Fuel - Experimental and Analytical Assessment of Higher Alcohols in Multi-component Blends with Gasoline

2013-10-14
2013-01-2612
This paper evaluates the potential of adding higher alcohols to gasoline blendstock in an attempt to improve overall fuel performance. The alcohols considered include ethanol, normal- and iso-structures of propanol, butanol and pentanol as well as normal-hexanol (C2-C6). Fuel performance is quantified based on energy content, knock resistance as well as petroleum displacement and promising multi-component blends are systematically identified based on property prediction methods. These promising multi-component blends, as well as their respective reference fuels, are subsequently tested for efficiency and emissions performance utilizing a gasoline direct injection, spark ignition engine. The engine test results confirm that combustion and efficiency of tailored multi-component blends closely match those of the reference fuels. Regulated emissions stemming from combustion of these blends are equal or lower compared to the reference fuels across the tested engine speed and load regime.
Technical Paper

Model-Based Systems Engineering and Control System Development via Virtual Hardware-in-the-Loop Simulation

2010-10-19
2010-01-2325
Model-based control system design improves quality, shortens development time, lowers engineering cost, and reduces rework. Evaluating a control system's performance, functionality, and robustness in a simulation environment avoids the time and expense of developing hardware and software for each design iteration. Simulating the performance of a design can be straightforward (though sometimes tedious, depending on the complexity of the system being developed) with mathematical models for the hardware components of the system (plant models) and control algorithms for embedded controllers. This paper describes a software tool and a methodology that not only allows a complete system simulation to be performed early in the product design cycle, but also greatly facilitates the construction of the model by automatically connecting the components and subsystems that comprise it.
X